머신러닝 본 포스팅은 Andrew Ng교수의 Machine Learning 코세라 강좌를 정리한 내용입니다. https://www.coursera.org/learn/machine-learning 경사하강법이 더 좋은 성능을 내기 위해서 취하는 몇가지 트릭이 있다. 특성 스케일링 특성 스케일링이란, 여러 특성이 있는 문제에서, 여러 특성들이 비슷한 스케일에 있게 만들어 주는 기술이다. 여러 특성을 비슷한 스케일로 맞춰준다면, 경사하강법이 더 빠르게 끝날 수 있다. 예제) 특성 $x_{1}$과 $x_{2}$가 있다. $x_{1}$ = 집의 크기 (0 - 2000 feet^2) $x_{2}$ = 방의 수 (1 - 5) 이전 강의에서 위와 같은 그래프를 기억할것이다. 만약 특성1과 특성2의 스케일이 차이가 많이..