연립 방정식과 행렬 다음과 같은 연립 방정식이 있다고 하자: (선형방정식은 1차식의 변수들만 존재하는 것이다.) $\begin{cases} x + 2y = 3 \\ x + 5y = 6 \end{cases}$ 위는 1번식에 4를 곱하고 2번식을 빼면, 3y = 6이 되고, y = 2라는 답이 나온다. 그리고 이를 대입해 x로 풀어내면, x = -1이라는 답을 얻을 수 있다. 위의 직선을 평면에 표현하면, x와 y는 두개의 직선의 교점임을 알 수 있다. 이를 컬럼벡터와 행렬을 통해 표현해 풀 수 있다. 위의 문제를 행렬과 벡터로 표현하면 다음과 같이 표현할 수 있다. $\begin{bmatrix} 1 \quad 2 \\ 4 \quad 5 \end{bmatrix} \begin{bmatrix} x \\ y \e..