728x90
반응형

데이터사이언스/추천시스템 13

추천시스템 - (3) 추천의 분류

추천시스템 추천의 분류 추천시스템을 고안할 때는 다음 8가지 분류를 고려해 고안한다: 추천의 도메인 추천의 목적 추천의 맥락 추천의 제안자 개인화의 정도 개인정보와 신뢰도 인터페이스 추천 알고리즘 추천의 도메인 무엇이 추천이 되고있는가? 기사인가, 물건인가, 상품인가? 사람을 추천하는 중인가? 연속적인 무언가 (음악 플레이리스트) 인가? 오래된 아이템을 대하는 방법 어떤 도메인에서는 새로운 아이템을 추천하는데에 관심이 있고 (영화나 책 등), 어떤 도메인에서는 오래된 아이템을 추천하는데에 관심이 있다 (음악, 상품 등) 추천의 목적 상품을 사거나 무언가를 소비하게 하는것 사용자/고객을 교육하는 것 상품이나 컨텐트의 커뮤니티를 형성하기 위한 것 추천의 맥락(Context) 추천이 이루어질 때 사용자는 무엇..

추천시스템 - (2) 선호도

추천시스템 서론 비개인적추천이란 사용자의 선호도가 고려되지 않은 추천이다. 이번에는 개인적추천과 비개인적추천 모두에 사용되는 데이터가 어떻게 발생되고 모아지는지에 대해서 이야기 한다. 추천을 하기 위해서는, 사용자가 어떤것을 좋아하는지에 대한 데이터와 어떤것들이 연관성이 있는지에 대한 데이터가 필요하다. 많은 시스템들에서 이러한 데이터들은 어떠한 방식으로든 사용자에게서 모은다. 어떤 데이터가 모아지는지, 그 데이터들이 어떤 의미인지에 대해서 알아보려 한다. 선호도 모델 선호도는, 사용자가 액션 영화를 좋아하는지, 또는 어떤 물건들이 연관성이 있는지와 같은 방대한 범위의 데이터이다. 사용자들은 선호도를 나타내기 위해 어떤 행위를 하는가? 사용자들은 선호도를 나타내기 위해서 명시적으로 평점을 매기거나 물건을..

추천시스템 - (1) 개요

추천시스템 추천시스템의 역사 정보검색 정보검색 분야는 방대한 양의 문서들에 대해 질문할 수 있는 시스템이 필요해서 만들어졌다. 초반에 이 분야가 발전하게 된것은 컴퓨터 회사들의 많은 소송때문이었다. 같은 기술이 도서관의 카탈로그와, WWW의 페이지들의 색인을 만드는데 쓰인다. 사람들은 다이나믹하게 카탈로그를 조회할 수 있기를 원하기 때문에 실시간으로 조회하는 기능이 필요했다. 많이 쓰이는 방식중 하나는, 문서들의 단어들의 빈도수를 사용해 랭킹을 매겨주는 TFIDF라고 하는 방법이다. 정보 필터링 정보검색의 반대되는 추정에서 시작 사람들은 기사를 검색할 때, 주제에 맞는 모든 기사를 원하는 것이 아니라 나와 연관있는 것 또는 내가 관심있는 것만 원한다. 정보의 필요는 정적이지만, 컨텐트 베이스는 동적이다...

728x90
반응형